1. (To turn in.) Let x_t be a stationary time series with mean μ and ACF $\rho(\cdot)$, and let $h > 0$. Show that the best predictor of X_{n+h} of the form $aX_n + b$ is obtained by choosing $a = \rho(h)$ and $b = \mu(1 - \rho(h))$.

2. (To turn in.) Consider the MA(2) process $x_t = w_t + w_{t-1} + w_{t-2}$, where w_t is a white noise process with mean 0 and variance 1. (a) Find the ACVF for x_t. (b) Find the predictors x_2^1 and x_3^2. (c) Suppose that we wish to predict x_2 from x_1 and x_3. Find the best predictor of x_2 of the form $\hat{x}_2 = a_1x_1 + a_3x_3$, where a_1 and a_3 are constants. (d) Suppose that we wish to predict x_3 from x_1 and x_5. Find the best predictor of x_3 of the form $\hat{x}_3 = a_1x_1 + a_5x_5$, where a_1 and a_5 are constants. (e) Find the mean squared prediction error (MSPE) for the predictor in (d).

3. (Not to turn in) Consider the time series $x_t = A\cos(\omega t) + B\sin(\omega t)$, where A and B are uncorrelated random variables with mean 0 and variance 1 and ω is a fixed constant. (a) Show that x_t is stationary and find its mean and ACVF. (b) Find the predictors x_2^3 and x_3^2. (c) Find the MSPE for each of the predictors from (b).

4. (To turn in) Consider the function $\gamma(h)$ defined by

$$\gamma(h) = \begin{cases} 1, & h = 0, \\ -0.5, & h = \pm 2, \text{ and} \\ 0, & \text{otherwise}. \end{cases}$$

(a) Show that γ is an ACVF by providing a stationary process x_t that has γ as its ACVF. (b) For the process x_t with ACVF γ, find the predictor x_3^2. (c) What is the MSPE for the predictor x_3^2 that you found in part (b)?